Evidence of Electronic Interaction between Classically Non-conjugated Aromatic Systems

By VITTORIO MANCINI, PAOLO PASSINI, and SERGIO SANTINI (Dipartimento di Chimica, Università di Perugia, 06100 Perugia, Italy)

Summary The occurrence of non-classic conjugation due to the overlapping of the non-parallel π -orbitals of the two aromatic systems in *cis*-1-phenyl-2-(4-pyridyl)cyclopropanes has been demonstrated by a study of chargetransfer (c.t.) complexes between iodine and a series of *cis*- and *trans*-1-(4-X-phenyl)-2-(4-pyridyl)cyclopropanes and from their acidity constants. HOMOCONJUGATIVE interactions provide a suitable mechanism for the transmission of electronic effects in classically non-conjugated systems.¹ Here we give evidence for a direct electronic interaction between the two aromatic systems in *cis*-1-phenyl-2-(4-pyridyl)cyclopropane where it is known that the cyclopropane ring does not transmit conjugative effects.² We have accordingly prepared a series of *trans*-1-

(4-X-phenyl)-2-(4-pyridyl)cyclopropanes by the Levine and Patrick procedure.³ The corresponding cis-derivatives were obtained from these by u.v. irradiation in n-hexane. The products of this photoisomerization were separated by chromatography and identified by n.m.r. spectroscopy.

TABLE 1. Equilibrium constants for the charge-transfer complexes between iodine and *cis*- and *trans*-1-(4-X-phenyl)-2-(4-pyridyl)cyclopropanes in CCl₄ at 293 K and pK_a values for the donors in water-ethanol (85:15) at 293 K.

Substituent	trans		cis		
X	$K_{ct}/mol^{-1}l$	pK_a	$K_{et}/mol^{-1}l$	pK_{a}	
н	122	4.90	200	5.12	
Me	125	4.93	238	5.20	
OMe	109	4.88	300	5.30	
Cl	96	4.85	159	4 ·98	
NO_2	92	4 ·80			

In order to show the effects that the X substituents have on the electron-donor ability and the basicity of the pyridine nitrogen, we determined the values of the stability constants σ_{I} are in Table 2. The trans-derivatives give a satisfactory correlation with σ_I for both reactions. This fact indicates that only the inductive effect of the substituents is operative in the *trans*-derivatives. Furthermore the small ρ values indicate that this effect is of little importance. In contrast the data for the *cis*-derivatives correlate well with the σ_{p} constants, indicating that the substituents transmit their effect both inductively and conjugatively. Transmission of the effect by the conjugation mechanism must occur by the overlapping of the two π -orbitals, having non-parallel axes, of the two aromatic systems so giving rise to a non-classical conjugation. Comparison of the ρ value obtained for c.t. complexation of the *cis*-derivatives (-0.52) with the ρ value obtained under the same conditions for 4-trans-styrylpyridines $(-0.38)^8$ shows that the conjugative effect is greater in our case than in a classic conjugation through a double bond. The ρ values for the c.t. complexation and for protonation are almost the same for both the trans- and the This is to be expected when the subcis-derivatives. strates do not differ in the steric requirements for the attack

TABLE 2. Correlation of charge-transfer equilibrium constants and acidity constants with substituent constants.

ρ ο ιο	γa	s ^b	6	ya.	s ^b
				,	3-
-0·19 -0·11	0·992 0·780	0·02 0·05	-0.21 - 0.52	$0.132 \\ 0.984$	0·07 0·03
-0·16 -0·11	$0.982 \\ 0.910$	$0.02 \\ 0.04$	-0.28 - 0.61	$0.157 \\ 0.991$	0·08 0·03
-	0·11 0·16	0·11 0·780 0·16 0·982	0.11 0.780 0.05 0.16 0.982 0.02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^a Correlation coefficient. ^b Standard deviation.

for the charge-transfer complexes between the cis- and transisomers of the cyclopropanes (n-donors) and iodine (σ acceptor) and also the values of the acidity constants for the same donors. The c.t. constants (K_{ct}) and acidity constants were determined spectrophotometrically as described in refs. 4 and 5, respectively, and the values obtained are in Table 1. Results for the correlation of these data, using the Hammett equation, with the substituent constants σ_n^6 and

by a proton and interaction with the iodine molecule. The analogy between protonation and complexation processes is also confirmed by a good linear relationship of log K_{ct} with pK_a for the two series of derivatives ($r_{trans} = 0.946$, $r_{cis} = 0.996$). We thank the C.N.R. (Rome) for support.

(Received, 21st September 1977; Com. 988.)

¹ V. Mancini, G. Marino, and L. Giachetti, *Gazzetta*, 1974, **104**, 549 and references therein. ² V. Mancini, G. Morelli, and L. Standoli, *Gazzetta*, 1977, **107**, 47.

- ⁹ R. Levine and G. R. Patrick, J. Org. Chem., 1973, 38, 3942.
 ⁴ G. G. Aloisi, G. Cauzzo, G. Giacometti, and U. Mazzucato, Trans. Faraday Soc., 1965, 61, 1406.
 ⁵ G. Cauzzo, G. Galiazzo, U. Mazzucato, and A. Mongiat, Tetrahedron, 1966, 22, 589.
 ⁶ D. H. McDaniel and H. C. Brown, J. Org. Chem., 1958, 23, 420.
 ⁷ P. R. Wells, S. Ehrenson, and R. W. Taft, Progr. Phys. Org. Chem., 1968, 6, 147
 ⁸ M. Wells, C. G. Chilia and K. W. Taft, Progr. Phys. Org. Chem., 1968, 6, 147

- ⁸ U. Mazzucato, G. G. Aloisi, and G. Cauzzo, Trans. Faraday Soc., 1966, 62, 2685.